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Introduction

Sensor Network Example

@ A network of 3 sensors, supervised passive learning.

@ Data is collected at different sensors: input t, output d.
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Introduction

Sensor Network Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: input t, output d.

Least square fit with polynomial max degree 3

30

System goal: a 3rd-degree
polynomial model:

d(t) = xat3+xot? +x1t+x0. ]

System objective:

3
min Y ||Ax — dill.
x i=1

where A; = [1,t;, t2, 3] at
Input data tl 1210 20 30 40 50_ 60 70 80 90
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Introduction

Regularized Empirical Loss Minimization Set-up

@ System objective: train weight vector x to

mXin z_: Li(x) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

o Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

n—1
. 2
min 3 [[Apx — bill3 + Ax]]

i=1

o Other examples from ML estimation, low rank matrix completion,
image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo
10], [Steidl, Teuber, 10]



Distributed Multi-agent Optimization

@ Connected undirected network of n cooperative agent to solve

mXin i fi(x).
i=1

@ Each function f; is only locally available to agent i.

@ Distributed algorithm: each agent performing computations locally and
communicating only to neighbors.!

@ Introduce local copy x; for each agent and reformulation to distributed setup

n X1 = X4 fa(xa)
me Z 7(i(xi) i) @ fs(xs)
i=1 5
.. - X3 = X,
s.it. x;=x;, for (i,j)e€E. "’ "2\/ e
fo(xy) (2——3) f3(x3)
Xy = X3

1This talk will focus on the case where x is in R. The results generalize to R".



Introduction

Other Motivations

@ Many networks are large-scale, with agents with local information and
heterogeneous preferences: call for distributed optimization.

@ Most existing distributed optimization algorithms require a central clock.

@ This motivated development of asynchronous distributed schemes for control and
optimization of multi-agent networked systems.

Parameter estimation in Multi-agent cooperative

R mart gri m
sensor networks control and coordination Smart grid systems



Distributed Multi-agent Optimization

@ Connected undirected network of n cooperative agent to solve

mXin i fi(x).
i=1

@ Each function f; is only locally available to agent i.

@ Distributed algorithm: each agent performing computations locally and
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Introduction

Consensus Based Algorithms

@ Each agent has a component of the system objective function and aims to
minimize its local cost function.

@ Each agent tries to keep its variable equal to those of neighboring agents.

@ The basic distributed gradient descent algorithm: each iterate (k), each
agent takes a (sub)gradient step and averages with neighbors.

xi(k +1) ZW,J — s(k)d;(k),
where Wj; > 0 weights, s(k) > 0 stepsize, d;(k) subgradient of f; at x;(k).
K+1 K+2
K+1 K
K+1

<:> K+2

K+2 K+1



ADMM Based Methods

@ Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min () + £(7)

st. Ax+ By =c.

@ Consider an Augmented Lagrangian function:

8
La(x,y,p) = f(x) +g(y) — p'(Ax+ By — c) + > ||Ax + By — cl[5.

x¥ = argmin,  Lg(x,y*, p),

y* Tt =argmin,  Lg(x*",y, p"),
pk+1 — pk o 5(AXk+1 _ Byk+1 _ C).



Introduction

Literature: Synchronous Distributed Optimization
Algorithms

@ Primal Methods :

o Consensus and Distributed Gradient Descent Algorithms [Bertsekas, Tsitsiklis
89], [Jadbabaie, Lin, Morse 03], [ Blondel, Hendrickx, Olshevsky, Tsitsiklis
05], [Nedi¢, Ozdaglar 09], [Yuan, Ling, Yin 13], [Jakovetic, Xavier, Moura
14], [Shi, Ling, Wu, Yin 14]

@ Dual Methods:
o Distributed dual averaging and ADMM Algorithms [Bertsekas, Tsitsiklis 89],
[Boyd, Parikh, Chu, Peleato, Eckstein 11], [Duchi, Agarwal, Wainwright 12],
[Wei, Ozdaglar 12]

@ Newton-based Methods:

o For network flow related problems [Jadbabaie, Ozdaglar, Zargham 09], [Wei,
Ozdaglar, Jadbabaie 10], [Liu, Sherali 12]

@ For sum minimization problems: Network Newton method [Mokhtari, Ling,
Ribeiro, 15]



Introduction

Asynchronous vs. Synchronous Algorithms

@ Synchronous Algorithms
o Agents will need to have access to a central coordinator/clock.
@ They must wait for the slowest to finish before proceeding to the next
iteration.

@ Asynchronous Algorithms
@ Agents become active randomly in time and update using delayed/partial
and local information.
@ There is no need for a central coordinator.
@ Partially asynchronous: bounded delay.
o Totally asynchronous: infinitely often update for each agent.

10



Introduction

Literature: Asynchronous Distributed Optimization
Algorithms

@ Primal Methods :

o Gossip-Based Algorithms [Boyd, Ghosh, Prabhakar, Shah 06], [Ram, Nedi¢,
Veeravalli 09]
o Broadcast-Based Algorithms [Nedi¢ 11]

o Coordinate-Based Algorithms [Peng, Xu, Yan, Yin 16], [Hannah, Yin 16]

@ Primal-Dual Methods:

e Coordinate Descent Algorithms [Binachi, Hachem, lutzeler 15]
@ Asynchronous Distributed ADMM [Wei, Ozdeglar 13], [Chang, Hong, Liao,
Wang 16]

@ Quasi Newton Methods: [Eisen, Mokhtari, Ribeiro 16], [Bajovic, Jakovetic,
Krejic, Jerinkic 17]

@ These algorithms can be shown to achieve:
o Totally asynchronous: sublinear linear rates (linear if similar delays).

11



This Talk

@ We present an asynchronous distributed network Newton algorithm for
multi-agent optimization with “nice” objective functions.

@ Asynchronous algorithm and distributed implementation

@ Hessian approximation method
o Algorithm and implementation

@ Convergence analysis

o Almost sure (global) convergence
o Global linear convergence
@ Local quadratic convergence

12



Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [x;];,

min F(x) = %XT(/ —W)x+a Z fi(x).
i=1

X

@ “Nice": The local objective functions fj(x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.
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Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [x;];,

X

min F(x) = %XT(/ —W)x+a Z fi(x).
i=1

@ “Nice": The local objective functions fj(x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz

continuous.
@ Each agent i knows f; and updates x;.
@ Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W=w, > Wy=1, 0<W;<1l
Jj=1

@ Matrix W represents the network topology: Wi #0 iff (i,j) € E for i #j.
@ Each agent knows local positive weights W for j in N; (neighbors of /).
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Standard Newton's Algorithm

@ Our asynchronous method is based on Newton'’s algorithm for unconstrained
problem with iteration

x(t+1) = x(t) +ed(t),

e ¢ is some positive stepsize and d(t) is the Newton direction.

o The Newton's direction is d(t) = H(t)"1g(t) with
H(t) = V?F(x(t)) =1 = W +aG(t), where G;(t) = Vfi(x(t)).
gi(t) = ViF(x(¢)) = [(/ = W)x(2)]i + aVfi(xi(t)).
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Standard Newton's Algorithm

@ Our asynchronous method is based on Newton'’s algorithm for unconstrained
problem with iteration

x(t+1) = x(t) +ed(t),

e ¢ is some positive stepsize and d(t) is the Newton direction.

o The Newton's direction is d(t) = H(t)"1g(t) with
H(t) = V?F(x(t)) =1 = W +aG(t), where G;(t) = Vfi(x(t)).
gi(t) = ViF(x(¢)) = [(/ = W)x(2)]i + aVfi(xi(t)).

@ The Hessian inverse cannot be computed in a distributed way directly.

@ Asynchronous network Newton uses the matrix splitting techniques and
truncated Taylor expansion to approximate the Hessian inverse in a
distributed manner.
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Asynchronous network Newton

Background on Hessian Approximation

@ Hessian matrix can be splitted as H(t) =/ — W + aG(t) = D(t) — B with
D(t) = aG(t) +2(1 — W), B=1-2W;+W
where Wy is a diagonal matrix with [Wy]i = Wi.

@ D(t) is positive definite and thus invertible.
@ We can write H(t)™! as

H(t)™" = D(t)"*(1 — D(t)""*BD(t)""/*)"'D(t) "/

@ We also have, if p(A) < 1, then (I — A)™' = 3" A

15



Asynchronous network Newton

Background on Hessian Approximation

@ Hessian matrix can be splitted as H(t) =/ — W + aG(t) = D(t) — B with
D(t) = aG(t) +2(1 — W), B=1-2W;+W
where Wy is a diagonal matrix with [Wy]i = Wi.

@ D(t) is positive definite and thus invertible.
@ We can write H(t)™! as

H(t)™ = D(t)"*(1 — D(¢)"*BD(t)~**) "' D(t) />

@ We also have, if p(A) < 1, then (I — A)™' = 3" A

@ From [Mokhtari, Ling, and Ribeiro 15] p(D(t)"*?BD(t)~'/?) < 1. Then by finite
truncation, we have Hessian inverse approximation
A(e)™ = D(t)2[1 + D(t) *BD(2) | D(1) .

15



Asynchronous network Newton

Distributed Computation of Approximate Hessian Inverse
Matrix

A(t) ™ = D(e) /[ 1+ (&) /*BD() 2| D(6) 2

@ Each agent i has local access to f; and W; and to Wj; for all neighbors j in N(/).
@ At iteration t

a Each agent i computes the i’th 4
diagonal element of D(t) , /
1
Dii(t) = aV2fi(xi(t)) + 2(1 — W), | @
b Each agent i computes B; and Bj 2 \3

for all neighbors ;.
& J f2(x2), Wap, Waq, Waz, Wys

Bi = 1-2W;+W; =1-W;;, By =W

Multiplication of matrix B corresponds to communicating with immediate neighbors,
which can also be carried out locally. The Newton's direction approximation would be

d(t) = A(t) "g(t).

16



Asynchronous network Newton

Asynchronous Network Newton

Each agent i is associated with a local clock that ticks with
probability p;, (0 <7 <pi <M <1 Y7, ,pi=1).

Whenever the clock ticks, an agent is active and updates its local
Newton direction.

@ Each agent’s stepsize is inversely proportional to its activation
probability.
The active agent finishes updating before another activation happens.

@ Whenever any agent is active the iteration counter is increased by 1.

17



Asynchronous network Newton

Asynchronous Network Newton Algorithm

Initialization: For i =1,2,...,n, each agent i sets x;(0) = 0, computes D;(0), gi(0),
d(0), Bji, and Bj:

a®(0)
0) — A2 (e 4
D;i(0) = aV=fi(x(0)) + 2(1 — W;), O :
gi(0) = (1 — Wi)xi(0) + aV(x(0)), v d<ﬂ>(o>
(0) = —Di(0)&i(0),
Bi=1- W, Bj=Wj
d(0) | 2 3 d(0)

and broadcasts d,-(o)(O) to all neighbors, stores received dj(o), x; values from neighbors.

18



Asynchronous Network Newton Algorithm

For i =1,2,...,n, each agent / sets x;(0) = 0, computes D,,(O) gi(0), d(o)(O), Bii, and
Bjj and broadcasts d,-(o)(O) to all neighbors, stores received dj . X; values from neighbors.

a Fort=1,2,..., an agent i is active according to its local clock with probability p;,
computes its local Newton's direction and updates its local iterate

gi(t—1)=(1— Wixi(t — 1)+ aVFi(x(t —1)) = > Wix(t — 1)
JEN;

d( (t—1)=-Di(t—1)" g,'(t—l)
/4

1

L\
2 3

g2(t = 1),d(t - 1)

18



Asynchronous Network Newton Algorithm

For i =1,2,...,n, each agent i sets x;(0) = 0, computes D;(0), gi(0), d,-(o)(O), Bij, and
Bj; and broadcasts d,-(o)(O) to all neighbors, stores received dj(o), x; values from neighbors.

a Fort=1,2,..., an agent i is active according to its local clock, computes its local
Newton's direction and updates its local iterate

di(t —1) = Di(t — 1) [BidV(t — 1) —gi(t — 1)+ > B;d (¢t —1)]
JEN;

— i (t — Edi(t—
xi(t) = xi(t 1)+p;d'(t 1)

. /4I

/

2 —

dy(t —1),x,(t)

18



Asynchronous Network Newton Algorithm

For i =1,2,...,n, each agent / sets x;(0) = 0, computes D,,(O) gi(0), d(o)(O), Bii, and
Bjj and broadcasts d,-(o)(O) to all neighbors, stores received dj . X; values from neighbors.

a Fort=1,2,..., an agent i is active according to its local clock, computes its local
Newton's direction and updates its local iterate

b Active agent updates Dj(t), gi(t), d,.(O)(t)

Dii(t) = aV>fi(xi(t)) + 2(1 - Wn)

gi(t) = (1= Wi)xi(e) + aVA(a() — 3 Wyx(t — 1),
JEN;

d(t) = —Di(t) 'gi(t). ’
1/
\ 5
AN

92(8), D25 (1), d ()
18



Asynchronous network Newton

Asynchronous Network Newton Algorithm

For i =1,2,...,n, each agent i sets x;(0) = 0, computes D;(0), gi(0), d,-(o)(O), Bij, and
Bj; and broadcasts d,-(o)(O) to all neighbors, stores received dj(o), x; values from neighbors.

a Fort =1,2,..., an agent / is active according to its local clock, computes its local
Newton's direction and updates it s local iterate

b Active agent updates Dj(t), gi(t), d[(o)(t)

c Active agent i broadcasts di(o)(t),x,-(t) to its neighbors who passively listen and
store received most updated values.

1/4
Al
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Convergence Analysis

Almost Sure Convergence and Global Linear Rate

Theorem

When the stepsize parameter satisfies 0 < ¢ < 27 (%)2 the sequence {F(x(t))}
converges to its optimal value F* almost surely.

If0 < e < min {%, 27 (%)2} then {F(x(t))} and {x(t)} converge linearly in
expectation, i.e.,

E[F(x(t)) — F*] < (1 - B)"[F(x(0)) — F*],

o\ 172 .
[ [Ix(t) — ] < (W’”F)) (a-8")"

am

19




Convergence Analysis

Almost Sure Convergence and Global Linear Rate

Theorem

When the stepsize parameter satisfies 0 < € < 2 (%)2 the sequence {F(x(t))}
converges to its optimal value F* almost surely.

If0 < e < min {%, 27 (%)2} then {F(x(t))} and {x(t)} converge linearly in
expectation, i.e.,

E[F(x(t)) — F*] < (1 - B)"[F(x(0)) — F*],

o 172 .
(|1t - ] < (2(”“0”‘”) (a-5")"

am

ame(2rA?—eA?)

. — 1+p — 1 — — min;: D:
Constants: A = =AY ram: A= SA=5)TaM’ 0<B="—5—<1 m=min;p;,

§ = min; Wi, A = max; Wi, ml < V2fi(x;)) =< MI, p=2(1—8)(2(1 — ) + am)
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Local Superlinear Convergence

Lemma

For stepsize with 0 < & < min {%, 21 (%)2} we have

IEJ[HD(tfl)l/z(x(t ) — x7) H] <r1< [HD (t—2)"2(x(t — 1)

+I(t [HDt 2)V2(x(t —1) H]

1)

20




Convergence Analysis

Local Superlinear Convergence

Lemma

) ) ) 2
For stepsize with 0 < & < min {%, 2m (2) } we have

E[ HD(t — )2 (x(t) — x7)

H <n (E[HD(t—Q)l/z(x(t— 1) — x7)

Il

and I(t) = G (1 L G- 5)%2) with

il

+ I'(t)]E[HD(t — )Y (x(t—1) — x7)

(2(176)+aM)1/2aLs/\
272 (2(1—A)+am)

1/2
1/2
G = <1+smax{; —2,@ —2(1—p2)}) <1 G = <%) , and

= (20-a)+am
G = G2 (F(x(0) - F*))1/4.

Constants: 'y =

20




Convergence Analysis

Local Superlinear Convergence

Theorem

For all t with

4Int

G q
— 42
“ma-p T*
we have I'(t) < 1 and there exists 0 < 0 < lr ;((:) , such that the sequence

E [HD(t —1)Y2(x(t) - x*) M decreases with a quadratic rate in expectation in this
interval.

This neighborhood is also characterized by

or(t) <E “|D(t — )2 (x(t) — x7)

H<ﬁ,

21




Simulation Results

Simulation Results

@ Asynchronous network Newton is compared against asynchronous ADMM
[Wei, Ozdeglar 13] and asynchronous gossip [Ram, Nedi¢, Veeravalli 09]
algorithms.

@ Tested on networks of 5 agents with complete and ring underlying graphs.

@ Tested on quadratic and non-quadratic objective functions.

@ Asynchronous network Newton outperforms the other two algorithms, which
is expected due to the local quadratic rate.

fie) (1) (&) falxa) A (2 4 ) fi(xs)

fa(x2) (2 3 ) f3(x3) \

fa(x2) (2

3 ) f3(x3)
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Simulation Results

Quadratic Objective Functions

@ Objective function at agent i: fi(x;) = (x — i)?
@ Minimum activation probability: m = %

@ Stepsize parameter for Async NN: ¢ = %

Complete Graph ’ Ring Graph

10°
n
—— Asyne NN
100 F = = Async NN, stepsize=1] |
& &
¥ o
B )
L0 S
L L
] g
£ &
= =
1010
IO—L

0 50 100 150 200 250 300 350 400

RN 50 100 150 200 250 300
Number of node activations Number of node activations
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Simulation Results

Regularized Logistic Regression

@ Data classification for K training samples that are uniformly
distributed over n =5 agents in a network.

o Each agent i has access to k; = | X | data points.

e ujj and v, j € {1,2,..., ki} are the feature vector and the label for
the data point j associated with agent i.

mxinf(x):§|yx\| KZZIog + exp(—vjjuix)]

i=1 j=1

ki

fi(X):*H I1”+ Z [1 + exp(—vju;x)].

=1

@ Tested on "Pima Indian Diabetes” data set with 768 data points,
feature vector of size 8, and a label which is either 1 or —1.

24



Simulation Results

Regularized Logistic Regression

ki

) = 50 I+ 4 D 10g [1 + exp(-vyuy)].

J 1

@ Minimum activation probability:
@ Stepsize parameter for Async NN: ¢ = 0.043

Complete Graph

Ring Graph

10”2
« *
& &
i i
ey ‘-“‘:IO“ —
L L -
: : =
| 5]

- — Async NN, stepsize = |

- - Asyne NN, stepsize = |

0 200 400 600 800 1000 0 200 400

600 800 1000
Number of node activations

Number of node activations
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Conclusions

Conclusions and Future Directions

@ Asynchronous distributed network Newton algorithm uses matrix splitting
techniques to approximate the Hessian inverse and compute Newton step.

@ This algorithm converges almost surely with in expectation global linear rate of
convergence.

@ Asynchronous network Newton achieves a local quadratic convergence rate (in
expectation) to a neighborhood of the optimum.

@ Simulation results show the convergence speed improvement of the asynchronous
network Newton compared to asynchronous ADMM and asynchronous gossip
algorithm.

@ Future directions:
@ Dynamic graph.
o Larger stepsize rules.

25
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