
A Fast Distributed Asynchronous Newton-Based
Optimization Algorithm

Ermin Wei

Joint work with Fatemeh (Samira) Mansoori

Electrical Engineering and Computer Science
Northwestern University

Midwest ML Symposium (MMLS)
Chicago

June 7, 2018

1

Introduction

Sensor Network Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: input t, output d .

2

Introduction

Sensor Network Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: input t, output d .

10 20 30 40 50 60 70 80 90 100 110
12

14

16

18

20

22

24

26

28

30

Temperature

E
le

ct
ric

ity
 D

em
an

d

Least square fit with polynomial max degree 3

2

Introduction

Sensor Network Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: input t, output d .

System goal: a 3rd-degree
polynomial model:

d(t) = x3t
3+x2t

2+x1t+x0.

System objective:

min
x

3∑
i=1

||A′ix − di ||
2
2 .

where Ai = [1, ti , t
2
i , t

3
i]′ at

input data ti . 10 20 30 40 50 60 70 80 90 100 110
12

14

16

18

20

22

24

26

28

30

Temperature

E
le

ct
ric

ity
 D

em
an

d

Least square fit with polynomial max degree 3

2

Introduction

Regularized Empirical Loss Minimization Set-up

System objective: train weight vector x to

min
x

n−1∑
i=1

Li (x) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

n−1∑
i=1

||A′ix − bi ||
2
2 + λ ||x ||1 .

Other examples from ML estimation, low rank matrix completion,
image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo
10], [Steidl, Teuber, 10]

3

Introduction

Distributed Multi-agent Optimization

Connected undirected network of n cooperative agent to solve

min
x

n∑
i=1

fi (x).

Each function fi is only locally available to agent i.

Distributed algorithm: each agent performing computations locally and
communicating only to neighbors.1

Introduce local copy xi for each agent and reformulation to distributed setup

min
x

n∑
i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E .

1

4

5

2 3𝑓2 𝑥2

𝑓5 𝑥5𝑓1 𝑥1

𝑓4 𝑥4

𝑓3 𝑥3

𝑥1 = 𝑥2

𝑥1 = 𝑥4

𝑥3 = 𝑥4

𝑥2 = 𝑥3

1This talk will focus on the case where x is in R. The results generalize to Rn.
4

Introduction

Other Motivations

Many networks are large-scale, with agents with local information and
heterogeneous preferences: call for distributed optimization.

Most existing distributed optimization algorithms require a central clock.

This motivated development of asynchronous distributed schemes for control and
optimization of multi-agent networked systems.

Parameter estimation in
sensor networks

Multi-agent cooperative
control and coordination Smart grid systems

5

Introduction

Distributed Multi-agent Optimization

Connected undirected network of n cooperative agent to solve

min
x

n∑
i=1

fi (x).

Each function fi is only locally available to agent i.

Distributed algorithm: each agent performing computations locally and
communicating only to neighbors.2

Introduce local copy xi for each agent and reformulation to distributed setup

min
x

n∑
i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E .

1

4

5

2 3𝑓2 𝑥2

𝑓5 𝑥5𝑓1 𝑥1

𝑓4 𝑥4

𝑓3 𝑥3

𝑥1 = 𝑥2

𝑥1 = 𝑥4

𝑥3 = 𝑥4

𝑥2 = 𝑥3

2This talk will focus on the case where x is in R. The results generalize to Rn.
6

Introduction

Consensus Based Algorithms

Each agent has a component of the system objective function and aims to
minimize its local cost function.

Each agent tries to keep its variable equal to those of neighboring agents.

The basic distributed gradient descent algorithm: each iterate (k), each
agent takes a (sub)gradient step and averages with neighbors.

xi (k + 1) =
n∑

j=1

Wij(k)xj(k)− s(k)di (k),

where Wij ≥ 0 weights, s(k) > 0 stepsize, di (k) subgradient of fi at xi (k).

K

K+1

K+1

K+1

K+2K+1

K+2
K+2

7

Introduction

ADMM Based Methods

Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min
x,y

f (x) + g(y)

s.t. Ax + By = c .

Consider an Augmented Lagrangian function:

Lβ(x , y , p) = f (x) + g(y)− p′(Ax + By − c) +
β

2
||Ax + By − c ||22 .

xk+1 = argminx Lβ(x , yk , pk),

yk+1 = argminy Lβ(xk+1, y , pk),

pk+1 = pk − β(Axk+1 − Byk+1 − c).

8

Introduction

Literature: Synchronous Distributed Optimization
Algorithms

Primal Methods :

Consensus and Distributed Gradient Descent Algorithms [Bertsekas, Tsitsiklis

89], [Jadbabaie, Lin, Morse 03], [Blondel, Hendrickx, Olshevsky, Tsitsiklis

05], [Nedić, Ozdaglar 09], [Yuan, Ling, Yin 13], [Jakovetic, Xavier, Moura

14], [Shi, Ling, Wu, Yin 14]

Dual Methods:

Distributed dual averaging and ADMM Algorithms [Bertsekas, Tsitsiklis 89],

[Boyd, Parikh, Chu, Peleato, Eckstein 11], [Duchi, Agarwal, Wainwright 12],

[Wei, Ozdaglar 12]

Newton-based Methods:

For network flow related problems [Jadbabaie, Ozdaglar, Zargham 09], [Wei,
Ozdaglar, Jadbabaie 10], [Liu, Sherali 12]

For sum minimization problems: Network Newton method [Mokhtari, Ling,

Ribeiro, 15]
9

Introduction

Asynchronous vs. Synchronous Algorithms

Synchronous Algorithms
Agents will need to have access to a central coordinator/clock.

They must wait for the slowest to finish before proceeding to the next

iteration.

Asynchronous Algorithms
Agents become active randomly in time and update using delayed/partial
and local information.
There is no need for a central coordinator.
Partially asynchronous: bounded delay.

Totally asynchronous: infinitely often update for each agent.

10

Introduction

Literature: Asynchronous Distributed Optimization
Algorithms

Primal Methods :

Gossip-Based Algorithms [Boyd, Ghosh, Prabhakar, Shah 06], [Ram, Nedić,
Veeravalli 09]
Broadcast-Based Algorithms [Nedić 11]

Coordinate-Based Algorithms [Peng, Xu, Yan, Yin 16], [Hannah, Yin 16]

Primal-Dual Methods:

Coordinate Descent Algorithms [Binachi, Hachem, Iutzeler 15]

Asynchronous Distributed ADMM [Wei, Ozdeglar 13], [Chang, Hong, Liao,

Wang 16]

Quasi Newton Methods: [Eisen, Mokhtari, Ribeiro 16], [Bajovic, Jakovetic,
Krejic, Jerinkic 17]

These algorithms can be shown to achieve:

Totally asynchronous: sublinear linear rates (linear if similar delays).
Partially asynchronous: linear rate. 11

Introduction

This Talk

We present an asynchronous distributed network Newton algorithm for
multi-agent optimization with “nice” objective functions.

Asynchronous algorithm and distributed implementation

Hessian approximation method

Algorithm and implementation

Convergence analysis

Almost sure (global) convergence
Global linear convergence

Local quadratic convergence

12

Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [xi]i ,

min
x

F (x) =
1

2
xT (I −W)x + α

n∑
i=1

fi (xi).

“Nice”: The local objective functions fi (x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.

Each agent i knows fi and updates xi .

Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W = W ′,

n∑
j=1

Wij = 1 , 0 < Wii < 1.

Matrix W represents the network topology: Wij 6= 0 iff (i , j) ∈ E for i 6= j .

Each agent knows local positive weights Wij for j in Ni (neighbors of i).

13

Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [xi]i ,

min
x

F (x) =
1

2
xT (I −W)x + α

n∑
i=1

fi (xi).

“Nice”: The local objective functions fi (x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.

Each agent i knows fi and updates xi .

Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W = W ′,

n∑
j=1

Wij = 1 , 0 < Wii < 1.

Matrix W represents the network topology: Wij 6= 0 iff (i , j) ∈ E for i 6= j .

Each agent knows local positive weights Wij for j in Ni (neighbors of i).

13

Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [xi]i ,

min
x

F (x) =
1

2
xT (I −W)x + α

n∑
i=1

fi (xi).

“Nice”: The local objective functions fi (x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.

Each agent i knows fi and updates xi .

Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W = W ′,

n∑
j=1

Wij = 1 , 0 < Wii < 1.

Matrix W represents the network topology: Wij 6= 0 iff (i , j) ∈ E for i 6= j .

Each agent knows local positive weights Wij for j in Ni (neighbors of i).

13

Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [xi]i ,

min
x

F (x) =
1

2
xT (I −W)x + α

n∑
i=1

fi (xi).

“Nice”: The local objective functions fi (x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.

Each agent i knows fi and updates xi .

Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W = W ′,

n∑
j=1

Wij = 1 , 0 < Wii < 1.

Matrix W represents the network topology: Wij 6= 0 iff (i , j) ∈ E for i 6= j .

Each agent knows local positive weights Wij for j in Ni (neighbors of i).

13

Asynchronous network Newton

Problem Formulation

We will consider minimizing the penalized version of the consensus problem over
a connected undirected static network of n agents. For x = [xi]i ,

min
x

F (x) =
1

2
xT (I −W)x + α

n∑
i=1

fi (xi).

“Nice”: The local objective functions fi (x) are convex, twice continuously
differentiable. Hessian matrices have bounded eigenvalues and are L-Lipschitz
continuous.

Each agent i knows fi and updates xi .

Matrix W is a symmetric doubly stochastic consensus/weight matrix: for all i

W = W ′,

n∑
j=1

Wij = 1 , 0 < Wii < 1.

Matrix W represents the network topology: Wij 6= 0 iff (i , j) ∈ E for i 6= j .

Each agent knows local positive weights Wij for j in Ni (neighbors of i).

13

Asynchronous network Newton

Standard Newton’s Algorithm

Our asynchronous method is based on Newton’s algorithm for unconstrained
problem with iteration

x(t + 1) = x(t) + εd(t),

ε is some positive stepsize and d(t) is the Newton direction.
The Newton’s direction is d(t) = H(t)−1g(t) with

H(t) = ∇2F (x(t)) = I −W + αG (t), where Gii (t) = ∇2fi (xi (t)).

gi (t) = ∇iF (x(t)) = [(I −W)x(t)]i + α∇fi (xi (t)).

The Hessian inverse cannot be computed in a distributed way directly.

Asynchronous network Newton uses the matrix splitting techniques and
truncated Taylor expansion to approximate the Hessian inverse in a
distributed manner.

14

Asynchronous network Newton

Standard Newton’s Algorithm

Our asynchronous method is based on Newton’s algorithm for unconstrained
problem with iteration

x(t + 1) = x(t) + εd(t),

ε is some positive stepsize and d(t) is the Newton direction.
The Newton’s direction is d(t) = H(t)−1g(t) with

H(t) = ∇2F (x(t)) = I −W + αG (t), where Gii (t) = ∇2fi (xi (t)).

gi (t) = ∇iF (x(t)) = [(I −W)x(t)]i + α∇fi (xi (t)).

The Hessian inverse cannot be computed in a distributed way directly.

Asynchronous network Newton uses the matrix splitting techniques and
truncated Taylor expansion to approximate the Hessian inverse in a
distributed manner.

14

Asynchronous network Newton

Background on Hessian Approximation

Hessian matrix can be splitted as H(t) =I −W + αG(t) = D(t)− B with

D(t) = αG(t) + 2(I −Wd), B = I − 2Wd + W

where Wd is a diagonal matrix with [Wd]ii = Wii .

D(t) is positive definite and thus invertible.

We can write H(t)−1 as

H(t)−1 = D(t)−1/2(I − D(t)−1/2BD(t)−1/2)−1D(t)−1/2

We also have, if ρ(A) < 1, then (I − A)−1 =
∑∞

k=0 Ak .

From [Mokhtari, Ling, and Ribeiro 15] ρ(D(t)−1/2BD(t)−1/2) < 1. Then by finite
truncation, we have Hessian inverse approximation

Ĥ(t)−1 = D(t)−1/2
[
I + D(t)−1/2BD(t)−1/2

]
D(t)−1/2.

15

Asynchronous network Newton

Background on Hessian Approximation

Hessian matrix can be splitted as H(t) =I −W + αG(t) = D(t)− B with

D(t) = αG(t) + 2(I −Wd), B = I − 2Wd + W

where Wd is a diagonal matrix with [Wd]ii = Wii .

D(t) is positive definite and thus invertible.

We can write H(t)−1 as

H(t)−1 = D(t)−1/2(I − D(t)−1/2BD(t)−1/2)−1D(t)−1/2

We also have, if ρ(A) < 1, then (I − A)−1 =
∑∞

k=0 Ak .

From [Mokhtari, Ling, and Ribeiro 15] ρ(D(t)−1/2BD(t)−1/2) < 1. Then by finite
truncation, we have Hessian inverse approximation

Ĥ(t)−1 = D(t)−1/2
[
I + D(t)−1/2BD(t)−1/2

]
D(t)−1/2.

15

Asynchronous network Newton

Distributed Computation of Approximate Hessian Inverse
Matrix

Ĥ(t)−1 = D(t)−1/2
[
I + D(t)−1/2BD(t)−1/2

]
D(t)−1/2.

Each agent i has local access to fi and Wii and to Wij for all neighbors j in N (i).

At iteration t

a Each agent i computes the i ′th
diagonal element of D(t) ,

Dii (t) = α∇2fi (xi (t)) + 2(1−Wii),

b Each agent i computes Bii and Bij

for all neighbors j .

Bii = 1−2Wii+Wii = 1−Wii , Bij = Wij ,

1

4

5

2 3

𝑓2 𝑥2 ,𝑊22,𝑊21, 𝑊23,𝑊25

Multiplication of matrix B corresponds to communicating with immediate neighbors,
which can also be carried out locally. The Newton’s direction approximation would be

d(t) = Ĥ(t)−1g(t).
16

Asynchronous network Newton

Asynchronous Network Newton

Each agent i is associated with a local clock that ticks with
probability pi , (0 < π ≤ pi ≤ Π < 1,

∑n
i=1 pi = 1).

Whenever the clock ticks, an agent is active and updates its local
Newton direction.

Each agent’s stepsize is inversely proportional to its activation
probability.

The active agent finishes updating before another activation happens.

Whenever any agent is active the iteration counter is increased by 1.

17

Asynchronous network Newton

Asynchronous Network Newton Algorithm

Initialization: For i = 1, 2, ..., n, each agent i sets xi (0) = 0, computes Dii (0), gi (0),

d
(0)
i (0), Bii , and Bij :

Dii (0) = α∇2fi (xi (0)) + 2(1−Wii),

gi (0) = (1−Wii)xi (0) + α∇fi (xi (0)),

d
(0)
i (0) = −Dii (0)−1gi (0),

Bii = 1−Wii , Bij = Wij ,

1

4

5

2 3

𝑑1
(0)
(0)

𝑑5
(0)
(0)

𝑑2
(0)
(0) 𝑑3

(0)
(0)

𝑑4
(0)
(0)

and broadcasts d
(0)
i (0) to all neighbors, stores received d

(0)
j , xj values from neighbors.

18

Asynchronous network Newton

Asynchronous Network Newton Algorithm

For i = 1, 2, ..., n, each agent i sets xi (0) = 0, computes Dii (0), gi (0), d
(0)
i (0), Bii , and

Bij and broadcasts d
(0)
i (0) to all neighbors, stores received d

(0)
j , xj values from neighbors.

a For t = 1, 2, ..., an agent i is active according to its local clock with probability pi ,
computes its local Newton’s direction and updates its local iterate

gi (t − 1) = (1−Wii)xi (t − 1) + α∇fi (xi (t − 1))−
∑
j∈Ni

Wijxj(t − 1)

d
(0)
i (t − 1) = −Dii (t − 1)−1gi (t − 1)

1

4

5

2 3

𝑔2 𝑡 − 1 , 𝑑2
0 (𝑡 − 1)

18

Asynchronous network Newton

Asynchronous Network Newton Algorithm

For i = 1, 2, ..., n, each agent i sets xi (0) = 0, computes Dii (0), gi (0), d
(0)
i (0), Bii , and

Bij and broadcasts d
(0)
i (0) to all neighbors, stores received d

(0)
j , xj values from neighbors.

a For t = 1, 2, ..., an agent i is active according to its local clock, computes its local
Newton’s direction and updates its local iterate

di (t − 1) = Dii (t − 1)−1[Biid
(0)
i (t − 1)− gi (t − 1) +

∑
j∈Ni

Bijd
(0)
j (t − 1)

]
xi (t) = xi (t − 1) +

ε

pi
di (t − 1)

1

4

5

2 3

𝑑2 𝑡 − 1 , 𝑥2(𝑡)

18

Asynchronous network Newton

Asynchronous Network Newton Algorithm

For i = 1, 2, ..., n, each agent i sets xi (0) = 0, computes Dii (0), gi (0), d
(0)
i (0), Bii , and

Bij and broadcasts d
(0)
i (0) to all neighbors, stores received d

(0)
j , xj values from neighbors.

a For t = 1, 2, ..., an agent i is active according to its local clock, computes its local
Newton’s direction and updates its local iterate

b Active agent updates Dii (t), gi (t), d
(0)
i (t)

Dii (t) = α∇2fi (xi (t)) + 2(1−Wii),

gi (t) = (1−Wii)xi (t) + α∇fi (xi (t))−
∑
j∈Ni

Wijxj(t − 1),

d
(0)
i (t) = −Dii (t)−1gi (t).

1

4

5

2 3

𝑔2 𝑡 , 𝐷22 𝑡 , 𝑑2
0 (𝑡)

18

Asynchronous network Newton

Asynchronous Network Newton Algorithm

For i = 1, 2, ..., n, each agent i sets xi (0) = 0, computes Dii (0), gi (0), d
(0)
i (0), Bii , and

Bij and broadcasts d
(0)
i (0) to all neighbors, stores received d

(0)
j , xj values from neighbors.

a For t = 1, 2, ..., an agent i is active according to its local clock, computes its local
Newton’s direction and updates it s local iterate

b Active agent updates Dii (t), gi (t), d
(0)
i (t)

c Active agent i broadcasts d
(0)
i (t), xi (t) to its neighbors who passively listen and

store received most updated values.

1

4

5

2 3

18

Convergence Analysis

Almost Sure Convergence and Global Linear Rate

Theorem

When the stepsize parameter satisfies 0 < ε ≤ 2π
(
λ
Λ

)2
, the sequence {F (x(t))}

converges to its optimal value F ∗ almost surely.

If 0 < ε ≤ min
{

1
2
, 2π

(
λ
Λ

)2
}

, then {F (x(t))} and {x(t)} converge linearly in

expectation, i.e.,

E
[
F (x(t))− F ∗

]
≤
(
1− β

)t[
F (x(0))− F ∗

]
,

E
[
||x(t)− x∗||

]
≤

(
2
(
F (x(0))− F ∗

)
αm

)1/2(
(1− β)1/2

)t
.

19

Convergence Analysis

Almost Sure Convergence and Global Linear Rate

Theorem

When the stepsize parameter satisfies 0 < ε ≤ 2π
(
λ
Λ

)2
, the sequence {F (x(t))}

converges to its optimal value F ∗ almost surely.

If 0 < ε ≤ min
{

1
2
, 2π

(
λ
Λ

)2
}

, then {F (x(t))} and {x(t)} converge linearly in

expectation, i.e.,

E
[
F (x(t))− F ∗

]
≤
(
1− β

)t[
F (x(0))− F ∗

]
,

E
[
||x(t)− x∗||

]
≤

(
2
(
F (x(0))− F ∗

)
αm

)1/2(
(1− β)1/2

)t
.

Constants: Λ = 1+ρ
2(1−∆)+αm

, λ = 1
2(1−δ)+αM

, 0 <β = αmε(2πλ2−εΛ2)
λπ

< 1, π = mini pi ,

δ = mini Wii , ∆ = maxi Wii , mI � ∇2fi (xi) � MI , ρ = 2(1− δ)(2(1− δ) + αm)

19

Convergence Analysis

Local Superlinear Convergence

Lemma

For stepsize with 0 < ε ≤ min
{

1
2
, 2π

(
λ
Λ

)2
}

, we have

E
[∣∣∣∣∣∣D(t − 1)1/2(x(t)− x∗

)∣∣∣∣∣∣] ≤ Γ1

(
E
[∣∣∣∣∣∣D(t − 2)1/2(x(t − 1)− x∗

)∣∣∣∣∣∣])2

+ Γ(t)E
[∣∣∣∣∣∣D(t − 2)1/2(x(t − 1)− x∗

)∣∣∣∣∣∣].

20

Convergence Analysis

Local Superlinear Convergence

Lemma

For stepsize with 0 < ε ≤ min
{

1
2
, 2π

(
λ
Λ

)2
}

, we have

E
[∣∣∣∣∣∣D(t − 1)1/2(x(t)− x∗

)∣∣∣∣∣∣] ≤ Γ1

(
E
[∣∣∣∣∣∣D(t − 2)1/2(x(t − 1)− x∗

)∣∣∣∣∣∣])2

+ Γ(t)E
[∣∣∣∣∣∣D(t − 2)1/2(x(t − 1)− x∗

)∣∣∣∣∣∣].
Constants: Γ1 =

(
2(1−δ)+αM

)1/2
αLεΛ

2π2
(

2(1−∆)+αm
) and Γ(t) = C1

(
1 + C3(1− β)

t−2
4

)
with

C1 =

(
1 + εmax

{
ε
π
− 2, ε(1−ρ2)2

π
− 2(1− ρ2)

})1/2

< 1, C2 =
(

εαLΛ

π
(

2(1−∆)+αm
))1/2

, and

C3 = C2

(
2
λπ2

(
F (x(0))− F ∗

))1/4

.

20

Convergence Analysis

Local Superlinear Convergence

Theorem

For all t with

t >
4 ln 1−C1

C3C1

ln (1− β)
+ 2,

we have Γ(t) < 1 and there exists 0 < θ < 1−Γ(t)
Γ1Γ(t)

, such that the sequence

E
[∥∥D(t − 1)1/2

(
x(t)− x∗

)∥∥] decreases with a quadratic rate in expectation in this

interval.

This neighborhood is also characterized by

θΓ(t) ≤ E
[∥∥D(t − 1)1/2(x(t)− x∗

)∥∥] < θ

θΓ1 + 1
,

21

Simulation Results

Simulation Results

Asynchronous network Newton is compared against asynchronous ADMM
[Wei, Ozdeglar 13] and asynchronous gossip [Ram, Nedić, Veeravalli 09]
algorithms.

Tested on networks of 5 agents with complete and ring underlying graphs.

Tested on quadratic and non-quadratic objective functions.

Asynchronous network Newton outperforms the other two algorithms, which

is expected due to the local quadratic rate.

5

1 4

2 3

𝑓1(𝑥1) 𝑓4(𝑥4)

𝑓5(𝑥5)

𝑓2(𝑥2) 𝑓3(𝑥3)

5

1 4

2 3

𝑓1(𝑥1) 𝑓4(𝑥4)

𝑓5(𝑥5)

𝑓2(𝑥2) 𝑓3(𝑥3)

22

Simulation Results

Quadratic Objective Functions

Objective function at agent i : fi (xi) = (x − i)2

Minimum activation probability: π = 2
15

Stepsize parameter for Async NN: ε = 2
15

Complete Graph Ring Graph

23

Simulation Results

Regularized Logistic Regression

Data classification for K training samples that are uniformly
distributed over n = 5 agents in a network.

Each agent i has access to ki = bKn c data points.

uij and vij , j ∈ {1, 2, ..., ki} are the feature vector and the label for
the data point j associated with agent i .

min
x

f (x) =
υ

2
||x ||2 +

1

K

n∑
i=1

ki∑
j=1

log
[
1 + exp(−vijuijx)

]
,

fi (x) =
υ

2n
||x ||2 +

1

K

ki∑
j=1

log
[
1 + exp(−vijuijx)

]
.

Tested on ”Pima Indian Diabetes” data set with 768 data points,
feature vector of size 8, and a label which is either 1 or −1.

24

Simulation Results

Regularized Logistic Regression

fi (x) =
υ

2n
||x ||2 +

1

K

ki∑
j=1

log
[
1 + exp(−vijuijx)

]
.

Minimum activation probability: 2
15

Stepsize parameter for Async NN: ε = 0.043

Complete Graph Ring Graph

24

Conclusions

Conclusions and Future Directions

Asynchronous distributed network Newton algorithm uses matrix splitting
techniques to approximate the Hessian inverse and compute Newton step.

This algorithm converges almost surely with in expectation global linear rate of
convergence.

Asynchronous network Newton achieves a local quadratic convergence rate (in
expectation) to a neighborhood of the optimum.

Simulation results show the convergence speed improvement of the asynchronous
network Newton compared to asynchronous ADMM and asynchronous gossip
algorithm.

Future directions:
Dynamic graph.

Larger stepsize rules.

25

	Introduction
	Asynchronous network Newton
	Convergence Analysis
	Simulation Results
	Conclusions

